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Lebowitz (1> has proven that for any finite, classical, mixing system 

f0 ~ (v(t). v(0)) dt = 0 (]) 

Due to the association of this integral with the diffusion constant, this result 
has led to the conclusion that such systems cannot be described by the 
diffusion equation. In particular, the hard-sphere gas, which Sinai (2) has 
proven to be mixing, has been regarded as unrealistic on this basis. 

Actually, for a finite system, the infinite-time integral of the velocity 
autocorrelation function does not yield the diffusion constant. In fact, Eq. (I) 
is a consequence of diffusion in a finite system and is completely consistent 
with a description of the system's approach to equilibrium by the diffusion 
equation with a nonzero diffusion constant. This can be seen f rom the 
following physical argument. 
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Suppose we have a system which does display diffusion. We wish to 
investigate the time dependence of the integral 

f0' (v(t ') " v(0)} dt' ------ (Jr(t) -- r(0)] �9 v(0)~ (2) 

Consider a particular particle with an initial position r(0) and an initial 
velocity v(0) (we shall average over these later). The probability distribution 
for r(t) will spread out and its average position will move in the direction 
given by the initial velocity. After a characteristic time t l ,  this average 
position will have essentially stopped a distance d away from the initial 
position. The product of  I v(0)t and d [which is a function of  I v(0)}] averaged 
over all initial velocities clearly provides a measure of the diffusion. The 
probability distribution for r(t) will continue to spread out, but the average 
value of  r(t) will not change appreciably until the probability distribution 
becomes significantly affected by the walls. This will occur after a time t2, 
which depends on the size of the system (for most macroscopic systems, d is 
small in comparison with the dimensions of the system, so that t2 >~ tl). The 
probability distribution will then continue to spread throughout the system 
until it is uniform and the average value of r(t) is the center of mass of the 
system, R. Since this is true for an arbitrary initial velocity, averaging over 
all possible directions of the initial velocity yields zero: 

t 

Lim ( ( v ( t ' )  �9 v(0)} dr' = ([R -- r(0)] �9 v(0)} = 0 (3) 
t-~oo J0 

To obtain a proper measure of the diffusion in a finite system, we should really 
evaluate the integral in Eq. (2) at a time t such that t~ >~ t >~ tl �9 On the other 
hand, we can explicitly neglect the walls by taking the thermodynamic limit 
(so that t2 --+ oo) and then let t -~ oe. The thermodynamic limit is, of  course, 
just a mathematical trick for simplifying calculations and does not actually 
introduce diffusion into the system. 

The approach to equilibrium of a finite system (a~ (and, in particular, 
the hard-sphere gas) can therefore be described by the diffusion equation 
with a nonzero diffusion constant and appropriate boundary conditions. 
However, the uncritical use of the traditional expression for the diffusion 
constant is not correct. 
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